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Introduction: The Notorious English past tense
 

IF ( “swing”, “wring”, “stick”, …)  THEN:    [ɪ] → [ʌ]

ELSE IF (“think”, “buy”, “fight”, …) THEN:   V → [ɔ]

ELSE IF (“dream”, “sleep”, “sweep”, …) THEN:   [i] → [ɛ]  + t

…

ELSE:       add -/ed/                (has the widest, most heterogeneous distribution)

What if ELSE case rarely occurs? 



Introduction: Research questions

[RQ 1] Can neural-net models capture minority defaults that 
have been claimed to require symbolic rules (e.g., Pinker & 
Prince, 1994) 

◆ YES for simple patterns (even for a one-node model like a 
perceptron/LR)

◆ But: not as an across-the-board default rule, but a disjunctive 
pattern + class competition!

[RQ 2] If so, how are they represented?



Introduction: Prior Work
● Rumelhart and McClelland (1986) first neural-net model of 

past-tense; criticized for its inability to appropriately handle 
default regular pattern (Pinker and Prince, 1988)

● Hare et. al. (1995) addressed the criticism and explored the 
notation of a less frequent “default” inflectional rule 

● Kirov and Cotterell (2018): RNN Encoder-Decoder (ED) to 
learn English verb inflection; criticized by Corkery et al. (2019) 
for inconsistency across multiple simulations 

● McCurdy, K., Goldwater, S., & Lopez, A. (2020); Beser (2021) 
on German minority pattern, models learned pattern but does 
not generalize like human-speakers



Experiments: Artificial Grammar

Limitations of modeling real-language data (e.g., German and Arabic):

1. No agreement on whether German and Arabic plurals involve a minority 
default pattern. 

2. No agreement (in case of German) on what the conditioning factors are.
3. Complex interaction across semantic, morphological, and phonological 

features

Artificial Grammar Learning as an alternative:   

Artificial pattern, controlled stimuli and features



Experiments: Pattern based on English plural allomorphy

If a word ends is a sibilant (s, z, ʃ, ʒ, tʃ, dʒ)        —> suffix A ([+strid])

Else if a word ends in a [-voice] segment          —> suffix B  (narrow default) 

ELSE (voiced Cs and V)                                  —> suffix C (wide default)

Majority Default Equal Frequency Minority Default

80% - suffix C
10% - suffix A
10% - suffix B

33% - suffix C
33% - suffix A
33% - suffix B

10% - suffix C
45% - suffix A
45% - suffix B
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Experiments
Pattern visualized

Suffix A: [+strid]

Suffix B: [-voice] and not [+strid]
Suffix C: everything else



Experiments: Training Stimuli

Step 4: Map input to feature vectors, 
output to one-hot vector

Input

Output

Suffix B → [ 0, 1, 0 ]

Step 2: Fill in segments

CVC → P IY1 H     

Step 1: Randomly select template 
from {CVC, CVVC, VCVC, CVCV}

CVC

Step 3: Determine suffix class

H ([-voice], [-strid]) → Suffix B



Experiments: Test Stimuli

1. Held-out test set
2. Mutant words: last segment changed to a different class → testing for effects 

of global similarity
3. New segments ‘h’ (suffix B) and ‘l’ (suffix C) → testing feature-based 

generalization
4. Novel templates: {VC, CCV, CVCC} → testing “defaultness” 

a. VC is the only 2-segment template, but is held-out



Experiments: Models

1. LSTM 
Encoder-decoder

2. Transformer Encoder

‘Hard’ temporal assumptions ‘Soft’ temporal assumptions

3. Logistic Regression

*Pool-last

Linear decision boundary



Experiments: ED
Test Data learning curves Distribution

Narrow distributions are learned 
first



Experiments: ED
Test Data learning curves Distribution

Narrow distributions are learned 
first

Frequency

More frequent patterns are 
learned first



Experiments: Transformer Experiments: LR



Experiments: Accuracy on Test Stimuli

Mutant New 
Template

[h]-final [l]-final

1.00 0.82 0.73 0.96

1.00 0.76 1.00 0.97

1.00 0.83 1.00 0.84

Condition Mutant New 
Template

[h]-final [l]-final

Maj. Def. 0.97 0.86 0.96 1.00

Equal 
Freq.

0.98 0.81 1.00 0.99

Min. Def. 1.00 0.83 1.00 0.89

LSTM Transformer

Overall high performance on mutants



Experiments: Accuracy on Test Stimuli

Mutant New 
Template

[h]-final [l]-final

1.00 0.82 0.73 0.96

1.00 0.76 1.00 0.97

1.00 0.83 1.00 0.84

LSTM struggled with CVCC

● Potentially due to how the model finds the last consonant in a 
word

Condition Mutant New 
Template

[h]-final [l]-final

Maj. Def. 0.97 0.86 0.96 1.00

Equal 
Freq.

0.98 0.81 1.00 0.99

Min. Def. 1.00 0.83 1.00 0.89

LSTM Transformer



Experiments: Accuracy on Test Stimuli

Mutant New 
Template

[h]-final [l]-final

1.00 0.82 0.73 0.96

1.00 0.76 1.00 0.97

1.00 0.83 1.00 0.84

Transformer struggled with VC

● But model generalized to suffix C. Evidence of default 
behavior? 

Condition Mutant New 
Template

[h]-final [l]-final

Maj. Def. 0.97 0.86 0.96 1.00

Equal 
Freq.

0.98 0.81 1.00 0.99

Min. Def. 1.00 0.83 1.00 0.89

LSTM Transformer



Experiments: Accuracy on Test Stimuli

Mutant New 
Template

[h]-final [l]-final

1.00 0.82 0.73 0.96

1.00 0.76 1.00 0.97

1.00 0.83 1.00 0.84

Condition Mutant New 
Template

[h]-final [l]-final

Maj. Def. 0.97 0.86 0.96 1.00

Equal 
Freq.

0.98 0.81 1.00 0.99

Min. Def. 1.00 0.83 1.00 0.89

RNN Transformer

Better performance on [h] than [l]



Analysis: LR Heatmap

Model learned: 
- Suffix A: [+strid], [+cor]
- Suffix B: [-voice], [-strid]
- Suffix C: [+voice], [+son]

Ground truth:
- Suffix A: [+strid]
- Suffix B: [-voice]
- Suffix C: everything else



Analysis: Saliency Map

Saliency map: ‘How sensitive is 
an output class to a specific 
feature?’ 

Yellow ~ positive; Blue ~ negative

Model learned:

- Suffix A: [+strid], [-nas]
- Suffix B: [-voice], [-son]
- Suffix C: [+voice], [-strid]



Key conclusions
- All models learned the minority default pattern through class-competition

- Effect of distribution: suffixes that apply to a more narrow class are learned better/first
- Effect of frequency: frequent patterns are learned better/first

Future Directions
- More complex patterns (e.g., exceptions that don’t form a natural class)
- Type vs. token frequency differences
- Different output representations

- Generalization to “novel” stimuli:
- Mutants: models pick up the relevant last segment, unaffected by overall similarity
- Novel templates - Transformers fails on VC & overgeneralizes the default



Thank you!
Code Paper



Agenda

1. Background & Research questions
a. Can neural nets represent defaults, and minority defaults?
b. Previous findings

2. Experiments
a. Design 
b. Models
c. Results

3. Takeaways and Future directions



Introduction
Big picture question

➔ Can neural-net models capture minority defaults that have been claimed to 
require symbolic rules (e.g., Pinker & Prince, 1994) 
◆ YES for simple patterns (even for a one-node model like a perceptron)
◆ But: not as an across-the-board default rule, but a disjunctive pattern+competition!

➔ If so, how are they represented?

Default or Elsewhere Case:

IF (some condition holds): 

Do X

ELSE:

Do Y         →   default   



Introduction: Prior Work
● Rumelhart and McClelland (1986) first neural-net model of 

past-tense; criticized for its inability to appropriately handle 
default regular pattern (Pinker and Prince, 1988)

● Hare et. al. (1995) addressed the criticism and explored the 
notation of a less frequent “default” inflectional rule 

● Kirov and Cotterell (2018): RNN Encoder-Decoder (ED) to 
learn English verb inflection; criticized by Corkery et al. (2019) 
for inconsistency across multiple simulations 

● McCurdy, K., Goldwater, S., & Lopez, A. (2020); Beser (2021) 
on German minority pattern, models learns frequency not 
defaults



Introduction
How do we know something is a default?
● Often, the test for whether a pattern is a “default” involves testing whether native 

speakers would generalize it to novel situations that don’t fit any other learned 
pattern. 

●
○ E.g. Pinker’s Dual-Route Model (Pinker, 1991) of English Past Tense predicts the 

regular -ed to occur by default whenever associative memory fails or has no 
relevant words/patterns.  That is, in cases of:
● Borrowed or novel words, including phonotactically-odd or illegal ones
● Abbreviations or acronyms
● Words used with additional morphological structure (proper names, 

derivatives, ….)
● In cases of certain types of aphasia or language disorders



Introduction
Introduction: Prior Work

● An early connectionist model by Rumelhart and McClelland (1986) was criticized by 
proponents of rule-based approaches for its inability to appropriately handle default 
regular pattern (Pinker and Prince, 1988)
○ The model’s ability to handle the regular rule was attributed to the frequency 

of -ed. So, minority default patterns became a particular focus. 
● Hare et. al. (1995) show a simple Feed-Forward network model can handle minority 

defaults (using pseudo-early English minority default pattern)
○ Pinker and Ullman (2002)  “clean-up network’ in which the units for -ed 

strengthen the units for an unchanged stem vowel and inhibit the units for a 
changed vowel [46] – in effect, an innate mechanism dedicated to the English past 
tense.” 



Introduction: More recent work 

● Kirov and Cotterell (2018) propose an RNN deep learning model with the Encoder-Decoder 
(ED) architecture to learn patterns like the English past tense.
● BUT: Corkery et al. (2019) showed that the ED model’s predictions were inconsistent 

across multiple simulations and, when averaged together, did not closely match the 
human data (they were worse than the rule-based model)

● McCurdy, K., Goldwater, S., & Lopez, A. (2020). Inflecting when there's no majority: 
limitations of encoder-decoder neural networks as cognitive models for German plurals. 
● The model achieved 88.8% accuracy on held-out data, but failed to predict the pattern of 

behavior on unusual and novel-sounding words 
● Beser (2021) compared a transformer model with an RNN’s on German plural (also English 

past tense and Russian paradigms gaps)
● Both models perform relatively well when given gender information 
● Both still fail to match human behavior on unusual stimuli from McCurdy et. Al. (2020) 



Case Study

1. [l] underspecified or [voice] and [strid]
2. [cor] in Suffix A moves faster than [son] in 

Suffix C in minority default
3. [l] gets classified into Suffix A 
4. [n] also underspecified, but in training set!

Why does LR fail [l] only 
in minority default?



Experiments: ED
Test Data learning curves

ENLARGED ON NEXT SLIDE



C is slowest 
when freq. is 

equal

Min. Def. learned 
slowest


